

TECHNICAL REPORT 0-7168-01-1 TxDOT PROJECT NUMBER 0-7168-01

Support XRF Determination of Tire Rubber Content in Asphalt Binders

Amit Bhasin Angelo Filonzi Darren Hazlett

August 2024 Published November 2024

https://library.ctr.utexas.edu/ctr-publications/0-7168-01-1.pdf

Technical Report Documentation Page					
1. Report No.		2. Gover		3. Recipient's Catalog No.	
FHWA/TX-25/0-7168-01-1		Accessio	on No.		
4. Title and Subtitle				5. Report Date	
Support XRF Determination of T	ire Rubber Cont	ent in Asp	halt	Submitted: August 2024	
Binders				6. Performing Organization Code	
7. Author(s)				8. Performing Organization Report No.	
Amit Bhasin, PhD, PE https://	//orcid.org/ 0000	-0001-807	76-7719	0-7168-01-1	
Darren Hazlett, PE https://ord	cid.org/0000-000	02-8360-0	022		
Angelo Filonzi, PhD https://c	orcid.org/0000-0	002-6902-	-8103		
9. Performing Organization Name	e and Address			10. Work Unit No. (TRAIS)	
Center for Transportation Res				11. Contract or Grant No.	
The University of Texas at Au				0-7168-01	
3925 W. Braker Lane, 4 th Floo Austin, TX 78759	or				
12. Sponsoring Agency Name and	d Address			13. Type of Report and Period Cove	red
Texas Department of Transpo				Implementation Report	
Research and Technology Implementation Division				April 2024 – Aug. 2024	
125 E. 11 th Street				14. Sponsoring Agency Code	
Austin, TX 78701					-
15. Supplementary Notes Project performed in cooperat	tion with the Tex	as Denart	ment of Tr	ansportation and the Federal Highw	av
Project performed in cooperation with the Texas Department of Transportation and the Federal Highway Administration.					uy
16. Abstract					
				ownwood Districts during their 202	
season for determining the tire rubber content using portable XRF units. CTR staff travelled to the three districts conduct training refreshers and assist in analyzing field samples used in district seal coats. Analysis was perform					
-	•	-	-	eld. Additionally, staff conducted a 1	-
				which also served to develop a calib	
specific combination of base bind		-	,	1	
-					
17. Key Words 18. Dist			18. Distrib	tribution Statement	
Tire Rubber, X-Ray Fluorescence		No restrictions. This document is available to the		to the	
				through the National Technical Info	
				e, Alexandria, Virginia 22312; www	
	20. Security Cla		his page)	21. No. of pages	22. Price
Unclassified	Unclassified			TBD [Total count excl. cover]	

Form DOT F 1700.7 (8-72) Reproduction of completed page authorized.

Support XRF Determination of Tire Rubber Content in Asphalt Binders

Darren Hazlett, PE Angelo Filonzi, PhD Amit Bhasin, PhD, PE

CTR Technical Report:	0-7168-01-1
Report Date:	Submitted: August 2024
Project:	0-7168-01
Project Title:	Support XRF determination of Tire Rubber content in asphalt binders
Sponsoring Agency:	Texas Department of Transportation
Performing Agency:	Center for Transportation Research at The University of Texas at Austin

Project performed in cooperation with the Texas Department of Transportation and the Federal Highway Administration.

Center for Transportation Research The University of Texas at Austin 3925 W. Braker Lane, 4th floor Austin, TX 78759

http://ctr.utexas.edu/

Disclaimers

Author's Disclaimer: The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official view or policies of the Federal Highway Administration or the Texas Department of Transportation (TxDOT). This report does not constitute a standard, specification, or regulation.

Patent Disclaimer: There was no invention or discovery conceived or first actually reduced to practice in the course of or under this contract, including any art, method, process, machine manufacture, design or composition of matter, or any new useful improvement thereof, or any variety of plant, which is or may be patentable under the patent laws of the United States of America or any foreign country.

Engineering Disclaimer

NOT INTENDED FOR CONSTRUCTION, BIDDING, OR PERMIT PURPOSES.

Project Engineer: Amit Bhasin, PhD, PE Professional Engineer License State and Number: Texas No. 126265 P.E. Designation: Research Supervisor

Acknowledgments

The authors acknowledge the financial support of TxDOT RTI program for funding through project 0-7168 and support from Project Managers Wade Odell and Darrin Jensen, and the Project Monitoring Committee (Enad Mahmoud, Pravat Karki, Zahra SotoodehNia, Mohammad Ilias, Caleb Payne, Christopher Alvarez, Nicholas Durkop, Frew Bogale, Eloy LopezMinjares, and Steve Smith). Researchers would also like to thank additional district personnel from the Brownwood, Odessa, and Lufkin Districts who participated in this project.

ABSTRACT

This work involved providing support to the Lufkin, Odessa, and Brownwood Districts during their 2024 seal coat season for determining the tire rubber content using portable XRF units. CTR staff travelled to the three districts to conduct training refreshers and assist in analyzing field samples used in district seal coats. Analysis was performed on the roadside, demonstrating the ability to conduct analysis in the field. Staff conducted an analysis of AR Binder samples with the three districts using blended AR binder calibration samples for a specific combination of base binder and tire rubber. Additionally, staff conducted a round-robin analysis of five unknown samples with the three districts to compare accuracy and repeatability.

EXECUTIVE SUMMARY

Tire rubber is required in certain TxDOT asphalt binders; e.g., AC-205TR, used for chip seal construction. These binders are specified and used in several districts across the state. Current Receiving Agency Standard Specification Item 300, Asphalts, Oils, and Emulsions, includes using test procedure Tex 553-C, "Determination of Re-Refined Engine Oil Bottoms, Polyphosphoric Acid, and Tire Rubber Content in Asphalt using X-Ray Fluorescence Spectroscopy."

Previously, this test procedure was only performed at the Receiving Agency Materials and Tests Division (MTD). This test can be implemented in the field with a portable XRF device and test procedure Tex-553-C can be used in conjunction with a calibration chart to evaluate and obtain a quantitative estimate of tire rubber at the district level.

The initial project (completed Dec. 2023) involved making this device available to district personnel (Lufkin, Odessa, and Brownwood) and training them to use the device on a routine basis to analyze tire rubber-modified asphalt binder for tire rubber content. In the initial project, the Performing Agency worked with the Receiving Agency and producers from around the state to develop calibration standards that can be used to determine the tire rubber content using the portable XRF units and conducted a round-robin analysis of samples from across different laboratories. The Performing Agency also revised test procedure Tex-553-C to account for procedures to use in the field.

This project extension allowed the Performing Agency to assist the Lufkin, Odessa, and Brownwood Districts in testing materials used in their 2024 seal coat program. This involved travelling to each district, reviewing the XRF training, and assisting each district during a seal coat project to test binders use on that project, in the field. This field analysis used a sampling and analysis process to sample and test for tire rubber content on the roadway project site.

Additionally, samples were formulated using binder and granulated tire rubber to distribute a set of calibration samples to each of the districts for analysis. This work showed that the XRF can be used to evaluate the tire rubber content of AR binder.

Finally, the Performing Agency conducted a round-robin to evaluate accuracy and repeatability using tire rubber modified binders with "unknown" (unknown to the tester) tire rubber content.

Table of Contents

Testing	8
1.1. Brownwood District Visit	8
1.2. Odessa District Visit	11
1.3. Lufkin District Visit	15
Chapter 2. Investigation of AR Binder	19
Chapter 3. Conduct Round Robin Program	21
Chapter 4. Summary/Conclusions	24

List of Tables

Table 1. CTR-Brownwood Field Sample Analysis.	11
Table 2. Asphalt Rubber Percent.	15
Table 3. CTR-Lufkin Field Sample Analysis.	18
Table 4. Asphalt Rubber Calibration Data	19
Table 5. Approximate TR content of blind samples.	21
Table 6. All Blind Round-Robin Analyses	21
Table 7. Modified Blind Round-Robin Analyses	22

List of Figures

Figure 1. Roadside Sampling
Figure 2. Roadside Sample
Figure 3. Portable XRF Field Testing Setup
Figure 4. Field Test Sample Preparation 10
Figure 5. Portable XRF Zinc ppm CTR and Brownwood XRF guns 10
Figure 6. AR Binder Sampling 11
Figure 7. Sample for testing 12
Figure 8. Portable XRF Field Testing Setup 12
Figure 9. Samples Poured for Testing 13
Figure 10. Field Testing
Figure 11. XRF Output Screen 14
Figure 12. CTR and Odessa Data Compilation
Figure 13. Roadside Sample
Figure 14. Portable XRF Field Testing Setup
Figure 15. Field Test in Progress
Figure 16. Portable XRF Zinc ppm CTR and Lufkin XRF guns 17
Figure 17. XRF of Type II AR Binder Calibration Samples

Chapter 1. Review Training and Provide Technical Support for In-the-Field Sampling and Testing

This Chapter describes the work performed for Tasks 2 and 4, "Review Training" and "Provide technical support to the three (3) districts". Individual visits were made to the Brownwood, Odessa, and Lufkin Districts to this field support. In those trips, STR staff reviewed the training and operation procedures of the field testing and assisted the district in conducting field testing on the roadside. Below is a summary of these visits.

1.1. Brownwood District Visit

On Thursday, May 9, 2024, CTR Staff travelled to the TxDOT Brownwood District to work with the district personnel for field sampling and testing of AC-20-5TR used in the district seal coat contracts. This project was on US 337 in McCulloch County.

Figure 1 shows the project roadside sampling in progress. The sample is taken directly from the distributor sampling port. The sample could have been taken from a nozzle instead.

Figure 1. Roadside Sampling.

Figure 2 shows the completed roadside sample for testing. This can is labelled for future reference and the remaining sample (only a small amount is needed for XRF testing) can be stored for additional testing if needed or desired.

1		
	Brownwood District - Asphalt Sample	
	Producer Location: B(w) Producer Location: B(w) ProducerCert.#: (24370/43 BOL#/6837 Cf:	
	Highway: US 377 - McCulloch	
	Asphalt Type: 20-57R Page Sampled: 3-9-24 Sampled by: <u>Nich Durrkop</u>	
21	Semanager [D:	

Figure 2. Roadside Sample.

Figures 3 shows the field testing set up in the bed of a pickup truck.

Figure 3. Portable XRF Field Testing Setup.

Figure 4 shows pouring of the field test binder into the sample containers for XRF analysis.

Figure 4. Field Test Sample Preparation.

Figures 5 shows the Zinc ppm for the field sample using both the Brownwood XRF gun and the CTR XRF gun. As shown, they numbers agree well.

Figure 5. Portable XRF Zinc ppm CTR and Brownwood XRF guns.

Using the calibration curve developed in the initial project, these readings produce the TR percent shown in Table 1.

Sample	CTR (Zn ppm)	CTR % TR	Brownwood (Zn ppm)	Brownwood % TR
1	1006	4.8	1006	4.8
2	1010	4.8	1015	4.8
3	1037	5	1033	4.9
4	1007	4.8	1009	4.8

Table 1. CTR-Brownwood Field Sample Analysis.

The initial report showed accuracy of ± 0.2 percent, however with a specification requiring 5% minimum TR content, either the binder is on the lower side of meeting the specifications or the calibration curve for this material needs updating to use current base binder and TR.

1.2. Odessa District Visit

On Wednesday, May 8, 2024, CTR Staff travelled to the TxDOT Odessa District to work with the district personnel for field sampling and testing of Type II AR Binder used in the district seal coat contracts. This project was on US 349.

Figure 6 shows sampling of the material. Samples came from the truck.

Figure 6. AR Binder Sampling.

Figure 7 shows the completed roadside sample for testing.

Figure 7. Sample for testing.

Figures 8 shows the field testing set up in the back of a pickup truck. Note there are some heavy items used to weigh down sampling and release paper due to wind.

Figure 8. Portable XRF Field Testing Setup.

Figure 9 shows samples poured for testing on truck tailgate.

Figure 9. Samples Poured for Testing.

Figure 10 shows field testing in progress. Test samples and the XRF gun.

Figure 10. Field Testing.

Figure 11 shows the XRF output screen from a test.

Figure 11. XRF Output Screen.

Figure 12 shows the compilation Zn reading data from the Odessa and CTR XRF guns.

Odessa Tr. Hay 8th 202 CTR Odessa ASPH XRF Gun XRF Gun A-R Type I hzy 8th, 2024 SH 349 4629 4607 1-5132 4615 4462 2: 3: 4605 4721 4567 4556 4-

Figure 12. CTR and Odessa Data Compilation.

The use of AR binder on this project did not allow calculation of tire rubber percent, as there was no calibration curve for this set of materials, and no previous work had been done with AR binder for this purpose. This did prove fortunate, as STR staff was able to acquire samples of binder and rubber to blend in the lab to both determine a calibration curve and conduct a round-robin with the other districts.

When calibration curves were developed (shown later in this report), the results are shown in Table 2.

Sample	CTR (Zn ppm)	CTR % TR	Odessa (Zn ppm)	Odessa % TR
1	4629	21.5	4607	20.6
2	4797	22.3	4615	20.7
3	4605	21.4	4721	21.1
4	4556	21.2	4567	20.5

Table 2. Asphalt Rubber Percent.

Type II Asphalt Rubber, in Item 300 indicates that a minimum of 15% tire rubber must be used. Historically, 20% is usually seen in order to meet the physical properties of the AR Binder.

1.3. Lufkin District Visit

On Tuesday, August 20, 2024, CTR staff travelled to the TxDOT Lufkin District to work with the district personnel for field sampling and testing of AC-20-5TR used in the district seal coat contracts. This project was on FM 222 in San Jacinto County.

Figure 13 shows the completed roadside sample for testing. This can is being prepared for pouring the XRF sample for testing.

Figure 13. Roadside Sample.

Figures 14 shows the field testing set up in the bed of a pickup truck.

Figure 14. Portable XRF Field Testing Setup.

Figure 15 shows the field test of binder with the XRF device in progress.

Figure 15. Field Test in Progress.

Figures 16 shows the Zinc ppm for the field sample using both the Lufkin XRF gun and the CTR XRF gun. As shown, they numbers agree well.

XRF voject District AC25 TR Martin Asphalt 60 sec Zinc concentration Lutkin CTR XRF Gon XEF Gun 51 AFRE ppm 1505 1460 52 1385 1487 Hzybe 53 1480 1383

Figure 16. Portable XRF Zinc ppm CTR and Lufkin XRF guns.

Using the calibration curve developed in the initial project, these readings produce the TR percent shown in Table 3.

Sample	CTR (Zn ppm)	CTR % TR	Lufkin (Zn ppm)	Lufkin % TR
1	1505	3.9	1460	4.0
2	1487	3.9	1385	3.8
3	1480	3.9	1383	3.8

Table 3. CTR-Lufkin Field Sample Analysis.

The calibration curves used for the TR content were developed the previous year. It is known that calibrations are specific to the XRF gun, the base asphalt, and the polymer. The Lufkin XRF gun had a malfunction last year and had to be sent for service, this could also add to errors in measurement. However, since the CTR and Lufkin analyses agree quite well, this data may indicate that the XRF calibration curves should be updated using binder and TR for this year's production.

Chapter 2. Investigation of AR Binder

Not every district uses AR binder, but those that do (mainly the Odessa District) should have a way of determining the tire rubber contained in the AR binder.

Type II Asphalt Rubber, in Item 300 indicates that a minimum of 15% tire rubber must be used. Historically, 20% is usually seen in order to meet the physical properties of the AR Binder.

The work in the Odessa District allowed the Performing Agency to develop a calibration curve for AR binder for each XRF gun. The Performing Agency used AR material and base binder to develop calibration standards for AR Binder. These were distributed to each of the three districts and XRF analysis for Zn ppm was performed by each district for each sample. Each tested sample was measured twice. The data is shown in Table 4. This material was composed of one base binder and a corresponding tire rubber used by that manufacturer.

Tester	CTR	Brownwood	Lufkin	Odessa
XRF Gun	SN 97393	SN 133080	SN 200125	SN 200129
TR Content	Zn (ppm)	Zn (ppm)	Zn (ppm)	Zn (ppm)
0	184	196	180	188
0	186	184	177	193
2.5	579	575	670	329
2.5	506	691	662	315
5	951	1107	1171	888
5	981	1160	1123	692
7.5	1336	1744	1660	1474
7.5	1186	1686	1661	1154
10	2019	2355	2164	2231
10	1986	2327	2106	2008
15	3112	3351	3363	3295
15	3106	3348	3302	3124
25	5658	5570	5339	5762
25	5196	5584	5491	5573
100	30700	n/a	32700	33500
100	29900	n/a	31100	32700

Plotting this data produces Figure 17. One can see that a linear trend lines fit the data on the upper end pretty well, but not so well in the lower end of TR concentration. This is believed to be because the base binder shows a higher Zn level affecting the Zn XRF measurements proportionately more in the lower concentrations. However, as AR binder must have a minimum

of 15% TR and usually contains about 20%, a linear trend line in the upper region fits well. This is the trend line fit used to evaluate the Odessa Type II AR Binder in Section 1.2 above.

A calibration for this specific combination of base binder and tire rubber will work to determine TR content in AR Binder.

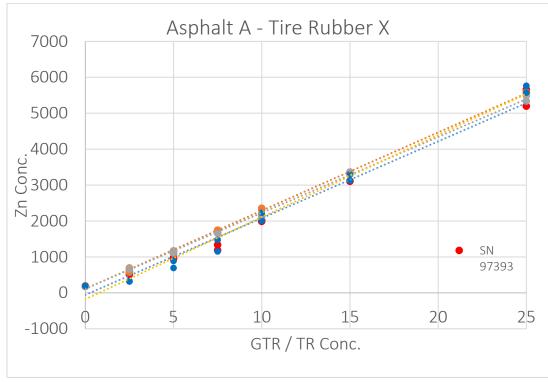


Figure 17. XRF of Type II AR Binder Calibration Samples.

Chapter 3. Conduct Round Robin Program

This Chapter describes the work performed for Task 3, "Conduct Round Robin Program."

Blind samples were created by CTR with the goal of producing samples of the approximate TR content shown in Table 5.

Sample	Supplier	Approximate TR content (%)			
1	Valero Houston	5			
2	Jebro Waco	2.5			
3	Ergon Lubbock	5			
4	Ergon Lubbock	7.5			
5	Wright	5			

Table 5. Approximate TR content of blind samples.

Included are two versions of the round-robin data. Table 6 shows all the data and Table 7 shows the same data with some eliminated due to suspected sample or analysis problems. This is based the significant differences seen in TR content for Ergon Lubbock as analyzed by Lufkin and Odessa.

The complete round-robin data is shown in Table 5.

Blind Sample		Percentage					
	CTR	Brownwood	Lufkin	Odessa	MTD	Average	StDev
	Lab 1	Lab 2	Lab 3	Lab 4	Lab 5		
1-A	5.4	5.6	5.3	5.5	5.4	5.44	0.10
1-B	5.4	5.5	5.3	5.5	5.5		
2-A	2.6	2.7	2.6	2.7	2.7	2.67	0.05
2-B	2.7	2.7	2.7	2.7	2.6		
3-A	5.8	5.2	6.5	6.6	6.0	5.96	0.55
3-B	5.4	5.5	6.5	6.6	5.5		
4-A	8.1	7.9	9.2	9.5	7.9	8.48	0.76
4-B	8.5	7.7	9.2	9.3	7.5		
5-A	4.8	4.9	4.9	5.1	5.0	4.93	0.11
5-B	4.8	4.9	4.9	5.1	4.9		

Table 6. All Blind Round-Robin Analyses

Blind Sample		Percentage					
	CTR	Brownwood	Lufkin	Odessa	MTD	Average	StDev
	Lab 1	Lab 2	Lab 3	Lab 4	Lab 5		
1-A	5.4	5.6	5.3	5.5	5.4	5.44	0.10
1-B	5.4	5.5	5.3	5.5	5.5		
2-A	2.6	2.7	2.6	2.7	2.7	2.67	0.05
2-B	2.7	2.7	2.7	2.7	2.6		
3-A	5.8	5.2			6.0	5.57	0.29
3-B	5.4	5.5			5.5		
4-A	8.1	7.9			7.9	7.93	0.34
4-B	8.5	7.7			7.5		
5-A	4.8	4.9	4.9	5.1	5.0	4.93	0.11
5-B	4.8	4.9	4.9	5.1	4.9		

Table 7. Modified Blind Round-Robin Analyses

Because of the data analysis problems, only the data in Table 7 will be used for statistical evaluation.

Since each asphalt sample was run twice, each measurement will be treated as a sample we have either 10 samples or 8 samples Using a two-tailed, 95% t-distribution:

For degrees of freedom (df) = number of observations (10) minus 1 = 9. From tabulated t-statistics, t = 2.26. Then the calculated 95% confidence intervals is:

 $\overline{X} + \pm 2.26 \ (\sigma/\sqrt{n})$

For degrees of freedom (df) = number of observations (8) minus 1 = 7. From tabulated t-statistics, t = 2.36. Then the calculated 95% confidence intervals is:

$\overline{X} + \pm 2.36 \ (\sigma/\sqrt{n})$, and

Then applying these to the data, the variation can be estimated as:

Blind 1 = 5.44 +/- 0.07. Blind 2 = 2.67 +/- 0.04 Blind 3 = 5.57 +/- 0.24 Blind 4 = 7.93 +/- 0.28

Blind 5 = 4.93 +/- 0.08

Some materials produce more repeatable results than others, and is likely dependent on the base asphalt and type of tire rubber used. Any changes would require developing a new calibration curve.

The analysis does show to be accurate in terms of test repeatability.

This analysis, showing higher average lab TR content of blind samples than the estimate of manufactured samples distributed, points to the likelihood that calibration curves require updating at least annually for each supplier.

Chapter 4. Summary/Conclusions

This chapter provides a summary of the work performed and conclusions.

Summary of work performed on this project included:

- CTR provided training and support for the Brownwood, Odessa, and Lufkin districts to conduct tire rubber concentration analysis at the project site.
- Calibration standards were developed and analyzed to determine the viability of using XRF for analysis of Asphalt Rubber Binder.
- A round robin on blind samples from one producer showed that the accuracy of the output to be approximately +/- 0.1 % TR for 3 of the 4 producers and +/- 0.3% TR for one producer.

Conclusions

- Measurement of TR content can be accomplished with a portable XRF analyzer in the field on a project site.
- XRF can be used to determine the tire rubber content in AR Binders, and can be measures in the field on the project site.
- The procedure produces an accurate measure of TR concentration.
- Differences in the formulated blind samples showing higher analyzed TR content than the estimated formulated TR content, show that annual generation of new calibration curves is likely needed. New calibration curves should be generated for any changes to the XRF gun, base binder, and TR (or other polymer) additive. Base asphalt changes are likely over time due to normal production variation.